Answer:
Option C is correct.
A reflection over the x-axis and then a reflection over the y-axis
Step-by-step explanation:
From the given figure:
The coordinates of ABC are:
A(-4, -3), B(-5, -2) and C(-3, -2).
and the coordinate of A'B'C' are:
A'(4, 3), B'(5, 2) and C(3, 2)
The rule of reflection over x-axis is given by:
[tex](x,y) \rightarrow (x, -y)[/tex]
[tex]A(-4,-3) \rightarrow (-4, -(-3)) =(-4, 3) [/tex]
[tex]B(-5,-2) \rightarrow (-5, 2)[/tex]
[tex]C(-3, -2) \rightarrow (-3, 2)[/tex]
then,
The rule of reflection over y-axis is given by:
[tex](x,y) \rightarrow (-x, y)[/tex]
[tex](-4,3) \rightarrow (4, 3)=A'[/tex]
[tex](-5,2) \rightarrow (5, 2)=B'[/tex]
[tex](-3,2) \rightarrow (3, 2)=C'[/tex]
Therefore, the triangle ABC is rotated 180 degree using the origin as the center of rotation is: A reflection over the x-axis and then a reflection over the y-axis