section of a pipe's length and weight are in proportion. If 2.5 m of pipe weighs 10 kg, then A) 5 m of pipe weighs 30 kg. B) 5 m of pipe weighs 40 kg. C) 10 m of pipe weighs 40 kg. D) 10 m of pipe weighs 80 kg.

Respuesta :

We will proceed to resolve each case to determine the solution.

we know that

[tex]2.5[/tex] m of pipe weighs [tex]10[/tex] kg

so

by proportion

Find the weighs of each case

case A) [tex]5[/tex] m of pipe weighs [tex]30[/tex] kg

[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{5}\frac{kg}{m}\\ \\2.5*x=5*10\\ \\x=50/2.5\\x=20\ kg[/tex]

[tex]20\ kg\neq30\ kg[/tex]

therefore

The statement case A) is False

case B) [tex]5[/tex] m of pipe weighs [tex]40[/tex] kg

[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{5}\frac{kg}{m}\\ \\2.5*x=5*10\\ \\x=50/2.5\\x=20\ kg[/tex]

[tex]20\ kg\neq40\ kg[/tex]

therefore

The statement case B) is False

case C) [tex]10[/tex] m of pipe weighs [tex]40[/tex] kg

[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{10}\frac{kg}{m}\\ \\2.5*x=10*10\\ \\x=100/2.5\\x=40\ kg[/tex]

[tex]40\ kg=40\ kg[/tex]

therefore

The statement case C) is True

case D) [tex]10[/tex] m of pipe weighs [tex]80[/tex] kg

[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{10}\frac{kg}{m}\\ \\2.5*x=10*10\\ \\x=100/2.5\\x=40\ kg[/tex]

[tex]40\ kg\neq80\ kg[/tex]

therefore

The statement case D) is False

therefore

the answer is

[tex]10[/tex] m of pipe weighs [tex]40[/tex] kg


Answer:

10 m of pipe weighs 40 kg

Step-by-step explanation:

If 2.5 m of pipe weighs 10 kg, then 10 m of pipe weighs 40 kg.

A proportional relationship exists when two quantities always have the same size in relation to each other.

    2.5 /10  =  10 /40