Respuesta :

(23•34y17) would be the answer.
Rules I'll be using
Rule 1: (a^b)/(a^c) = a^(b-c)
Rule 2: (a^b)^c = a^(b*c)
Rule 3: (a*b)^c = a^b*a^c
Rule 4: x = x^1

---------------------------------

(6y^3)^4 = (6^1*y^3)^4 .... use rule 4 (see above)
(6y^3)^4 = (6^1)^4*(y^3)^4 .... use rule 3
(6y^3)^4 = 6^(1*4) * y^(3*4) ... use rule 2
(6y^3)^4 = 6^4*y^12
(6y^3)^4 = 1296y^12

---------------------------------

[ (6y^3)^4 ]/(2y^5) = (1296y^12)/(2y^5) ....... substitution (previous section)
[ (6y^3)^4 ]/(2y^5) = (1296/2)*((y^12)/(y^5))
[ (6y^3)^4 ]/(2y^5) = 648*y^(12-5) ... use rule 1
[ (6y^3)^4 ]/(2y^5) = 648*y^7

---------------------------------

Final Answer: 648y^7