The curved part of this figures is a semicircle.

What is the best approximation for the area of this figure?

28+16.25π units²

28+8.125π units²

14+16.25π units²

14+8.125π units²

The curved part of this figures is a semicircle What is the best approximation for the area of this figure 281625π units 288125π units 141625π units 148125π uni class=

Respuesta :

The answer is 14+8.125π units².

Answer:

[tex](14+8.125 \pi)\ units^{2}[/tex]

Step-by-step explanation:

we know that

The area of the figure is equal to the area of a triangle plus the area of semicircle

Step 1

Find the area of triangle

The area of triangle is

[tex]A=bh/2[/tex]

we have

[tex]b=(3-(-4))=7\ units[/tex]

[tex]h=(2-(-2))=4\ units[/tex]

substitute

[tex]A=(7*4)/2=14\ units^{2}[/tex]

Step 2

The area of semicircle is equal to

[tex]A=\frac{1}{2} \pi r^{2}[/tex]

Find the radius

The radius is the half distance between points [tex](-4,-2)[/tex] and [tex](3,2)[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

substitute the values

[tex]d=\sqrt{(2+2)^{2}+(3+4)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2}+(7)^{2}}[/tex]

[tex]d=\sqrt{65}\ units[/tex]  -------> is the diameter

the radius is equal to

[tex]r=(\frac{1}{2})\sqrt{65}\ units[/tex]

Find the area of semicircle

[tex]A=\frac{1}{2} \pi ((\frac{1}{2})\sqrt{65})^{2}[/tex]

[tex]A=\frac{65}{8} \pi\ units^{2}[/tex]

[tex]A=8.125 \pi\ units^{2}[/tex]

Step 3

Find the area pf the figure

[tex]14\ units^{2}+8.125 \pi\ units^{2}[/tex]

[tex](14+8.125 \pi)\ units^{2}[/tex]