Respuesta :

answer 2 is the right one for your equation

Answer:

The expression that have the following quotient is:

  •          [tex]\dfrac{-4x^2+20x-25}{-2x+5}[/tex]
  •          [tex]\dfrac{-14x^2+35x}{-7x}[/tex]
  •          [tex]\dfrac{12x^2-58x+70}{6x-14}[/tex]

Step-by-step explanation:

1)

[tex]\dfrac{-4x^2+20x-25}{-2x+5}[/tex]

It could also be written as:

[tex]\dfrac{-(5-2x)^2}{5-2x}\\\\\\=-(5-2x)\\\\\\=2x-5[/tex]

Hence, we get the quotient:

    [tex]2x-5[/tex]

Option: (1) is correct.

2)

[tex]\dfrac{-14x^2+35x}{-7x}[/tex]

which is simplified as follows:

[tex]\dfrac{-7x(2x-5)}{-7x}\\\\\\=2x-5[/tex]

Option: (2) is correct.

3)

[tex]\dfrac{12x^2-58x+70}{6x-14}[/tex]

which is simplified as follows:

[tex]=\dfrac{2(2x-5)(3x-7)}{2(3x-7)}\\\\\\=2x-5[/tex]

Hence, option: (3) is correct.

4)

[tex]\dfrac{6x^2-10x-4}{3x+1}[/tex]

On simplifying:

[tex]\dfrac{2(3x+1)(x-2)}{3x+1}\\\\\\=2(x-2)\\\\\\=2x-4[/tex]

Hence, option: (4) is incorrect.

5)

[tex]\dfrac{18x-45}{9x}[/tex]

on simplifying:

[tex]\dfrac{9(2x-5)}{9x}\\\\\\=\dfrac{2x-5}{x}[/tex]

Hence, option: (4) is incorrect.