Respuesta :
[tex]2a^{- \frac{1}{2} }= \cfrac{2}{a^{ \frac{1}{2} }} = \cfrac{2}{ \sqrt{a} } = \cfrac{2 \sqrt{a} }{a} [/tex]
Answer:
[tex]\frac{2\sqrt a}{a}[/tex]
Step-by-step explanation:
The given equation is [tex]2a^{-1/2}[/tex]
The exponent rule: [tex]x^{-a}=\frac{1}{x^a}[/tex]
Using this rule, we get
[tex]2a^{-1/2}\\\\=\frac{2}{a^1/2}[/tex]
We can rewrite this in radical form as
[tex]\frac{2}{\sqrt a}[/tex]
Rationalize the denominator by multiplying numerator and denominator by [tex]\sqrt a[/tex]
[tex]\frac{2}{\sqrt a}\cdot \frac{\sqrt a}{\sqrt a}[/tex]
On simplifying
[tex]\frac{2\sqrt a}{a}[/tex]