Amir is operating a machine that adds sand to a concrete mixture. The machine adds 1/10 ton of sand to the mixture in 4/5 minute. Enter a number in each box to complete the statements. Write the ratio that compares 1/10 ton of sand to 4/5 minute. The ratio in ton(s) per minute(s) is $ ​. Simplify the ratio to find the amount of sand added in one minute. ton(s) per minute

Respuesta :

 The ratio will be [tex] \frac{tonofsand}{minutes} [/tex]. Since we know the machine adds [tex] \frac{1}{10} [/tex] ton of sand to the mixture in [tex] \frac{4}{5} [/tex] minute, the only thing we need to do is replace those values in our ratio to get:
[tex] \frac{tonofsand}{minutes} = \frac{ \frac{1}{10} }{ \frac{4}{5} } [/tex]
Now, lets simplify our ratio. Notice that our ratio is a division of tow fractions, and remember that to dive fractions we just flip the second fraction and multiply:
[tex] \frac{ \frac{1}{10} }{ \frac{4}{5} } = \frac{1}{10} . \frac{5}{4} = \frac{5}{40} = \frac{1}{8} [/tex]
We can conclude that the ratio in ton(s) per minute(s) is [tex] \frac{1}{8} [/tex], which means [tex] \frac{1}{8} [/tex] ton of sand added in one minute ([tex] \frac{1}{8} ton/minute[/tex])