Respuesta :

We assume the variables y and h to be positive.

[tex] \sqrt{\dfrac{64y^{10}h^{5}}{16y^{12}h^{5}}} =[/tex]

[tex] = \sqrt{\dfrac{64}{16} \times \dfrac{y^{10}}{y^{12}} \times \dfrac{h^{5}}{h^{5}}} [/tex]

[tex] = \sqrt{4 \times \dfrac{1}{y^{2}} \times 1} [/tex]

[tex] = \sqrt{\dfrac{4}{y^{2}}} [/tex]

[tex] = \dfrac{2}{y} [/tex]

After the simplification of the  given radial expression [tex]\sqrt{\frac{64}{16}(\frac{y^{10} }{y^{12} } )\frac{h^{5} }{h^{5} } }[/tex] we get [tex]\frac{2}{y}[/tex].

What is radical expression?

A radical expression is defined as any expression containing a radical ([tex]\sqrt{}[/tex]) symbol.

The term underneath the radical symbol is called the radicand.

How to solve radical expression?

To solve a radical expression, simply take the the square root of the radicand.

According to the given question, we have a radical expression

[tex]\sqrt{\frac{64y^{10}h^{5} }{16y^{12} h^{5} } }[/tex]

=[tex]\sqrt{\frac{64}{16}(\frac{y^{10} }{y^{12} } )\frac{h^{5} }{h^{5} } }[/tex]                           ([tex]\frac{x^{m} }{x^{n} } =x^{m-n}[/tex])

= [tex]\sqrt{4(\frac{1}{y^{2} })(1) }[/tex]

= [tex]\sqrt{\frac{4}{y^{2} } }[/tex]

= [tex]\frac{2}{y}[/tex]

Learn more about the radial expression here:

https://brainly.com/question/14671869

#SPJ2