Find the area of the given triangle. Round the answer to the nearest tenth.


A.
7.9 square units
B.
149.4 square units
C.
2,055.6 square units
D.
2,071.8 square units

Find the area of the given triangle Round the answer to the nearest tenth A 79 square units B 1494 square units C 20556 square units D 20718 square units class=

Respuesta :

Using Heron's formula:
A = √(p(p-a)(p-b)(p-c)) where a,b,c are the sides of the triangle and p is half the perimeter.
The answer is B. 149.4 square units.

Answer:

B) Area of triangle =  149.4 square units.

Step-by-step explanation:

Given : A triangle with sides 16 , 19, 27 .

To find : Area of a triangle.

Solution : We have given that triangle with sides 16 , 19, 27 .

Using heron's formula :

Area of triangle:  [tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex].

Where, s = [tex]\frac{a+b+c}{2}[/tex] and a,b,c are sides of triangle.

Then s = [tex]\frac{16+19+27}{2}[/tex].

s = 31 units.

Area of triangle =  [tex]\sqrt{31(31-16)(31-19)(31-27)}[/tex].

Area of triangle =  [tex]\sqrt{31(15)(12)(4)}[/tex].

Area of triangle =  [tex]\sqrt{22320)}[/tex].

Area of triangle =  149.39 square units.

Area of triangle =  149.4 square units. ( nearest tenth)

Therefore, B) Area of triangle =  149.4 square units.