Respuesta :
[tex]\bf \textit{the coefficient and values of an expanded term}\\\\
(5y-3)^{10} \qquad \qquad
\begin{array}{llll}
expansion\\
for\\
6^{th}~term
\end{array} \quad
\begin{cases}
\stackrel{term}{k}=0..10\\
\stackrel{exponent}{10}\\
-----\\
k=\stackrel{6^{th}~term}{5}\\
n=10
\end{cases}[/tex]
[tex]\bf \stackrel{coefficient}{\left(\frac{n!}{k!(n-k)!}\right)} \qquad \stackrel{\stackrel{first~term}{factor}}{\left( a^{n-k} \right)} \qquad \stackrel{\stackrel{second~term}{factor}}{\left( b^k \right)}[/tex]
[tex]\bf \stackrel{coefficient}{\left(\frac{10!}{5!(10-5)!}\right)} \qquad \stackrel{\stackrel{first~term}{factor}}{\left( (5y)^{10-5} \right)} \qquad \stackrel{\stackrel{second~term}{factor}}{\left( (-3)^5 \right)} \\\\\\ 252(5y)^5(-3)^5\implies 252(5^5y^5)(-3)^5\implies -252(3125y^5)(243) \\\\\\ -191362500y^5[/tex]
[tex]\bf \stackrel{coefficient}{\left(\frac{n!}{k!(n-k)!}\right)} \qquad \stackrel{\stackrel{first~term}{factor}}{\left( a^{n-k} \right)} \qquad \stackrel{\stackrel{second~term}{factor}}{\left( b^k \right)}[/tex]
[tex]\bf \stackrel{coefficient}{\left(\frac{10!}{5!(10-5)!}\right)} \qquad \stackrel{\stackrel{first~term}{factor}}{\left( (5y)^{10-5} \right)} \qquad \stackrel{\stackrel{second~term}{factor}}{\left( (-3)^5 \right)} \\\\\\ 252(5y)^5(-3)^5\implies 252(5^5y^5)(-3)^5\implies -252(3125y^5)(243) \\\\\\ -191362500y^5[/tex]