Respuesta :

(1)

we are given

[tex]f(x)=5x^2-2x[/tex]

[tex]g(x)=3x^2+x-4[/tex]

[tex](f+g)(x)=f(x)+g(x)[/tex]

now, we can plug

[tex](f+g)(x)=5x^2-2x+3x^2+x-4[/tex]

[tex](f+g)(x)=8x^2-x-4[/tex]...........Answer

(2)

we are given

[tex]f(x)=2x^2-3[/tex]

[tex]g(x)=x+4[/tex]

[tex](fg)(x)=f(x) \times g(x)[/tex]

now, we can plug

[tex](fg)(x)=(2x^2-3) \times (x+4) [/tex]

[tex](fg)(x)=2x^3+8x^2-3x-12[/tex]...........Answer

(3)

we are given

[tex]f(x)=3x^2+10x-8[/tex]

[tex]g(x)=3x^2-2x[/tex]

we have

[tex](\frac{f}{g} )(x)=\frac{f(x)}{g(x)}[/tex]

now, we can plug values

[tex](\frac{f}{g} )(x)=\frac{3x^2+10x-8}{3x^2 -2x}[/tex]

now, we can factor it

[tex](\frac{f}{g} )(x)=\frac{(3x-2)(x+4)}{x(3x -2)}[/tex]

now, we can factor it

[tex](\frac{f}{g} )(x)=\frac{(x+4)}{x}[/tex]

we know that denominator can not be zero

so,

[tex]3x^2-2x\neq 0[/tex]

[tex]x\neq 0, x\neq (2/3)[/tex]

so, option-C.........Answer

(4)

we are given

[tex]r(x)=x^2+6x+10[/tex]

[tex]c(x)=x^2-4x+5[/tex]

[tex](r-c)(x)=r(x)-c(x)[/tex]

now, we can plug it

[tex](r-c)(x)=x^2+6x+10-(x^2-4x+5)[/tex]

[tex](r-c)(x)=10x+5[/tex]

now, we can plug x=4

[tex](r-c)(4)=10*4+5[/tex]

[tex](r-c)(4)=45[/tex]

so, option-C..................Answer

(5)

we are given

[tex]c(x)=50+5x[/tex]

[tex]p(x)=100-2x[/tex]

[tex](p*c)(x)=p(x)*c(x)[/tex]

now, we can plug values

[tex](p*c)(x)=(50+5x)*(100-2x)[/tex]

now, we can plug x=2

[tex](p*c)(2)=(50+5*2)*(100-2*2)[/tex]

[tex](p*c)(2)=5760[/tex]

we know that

price is

[tex]c(x)=50+5x[/tex]

we can plug x=2

[tex]c(2)=50+5*2[/tex]

[tex]c(2)=60[/tex]

so, option-B...............Answer

Answer:

bbbbbbbbbbbbbb

Step-by-step explanation: