Respuesta :
x= a number
sum= add
more than= add
is= equal sign
square of= multiply the # by itself
x^2 + (x+3)^2= 45
x^2 + (x+3)(x+3)= 45
x^2 + x^2 + 3x + 3x + 9 = 45
combine like terms
2x^2 + 6x + 9= 45
subtract 9 from both sides
2x^2 + 6x= 36
reduce by dividing everything by 2
x^2 + 3x= 18
subtract 18 from both sides
x^2 + 3x - 18= 0
factor
(x+6)(x-3)= 0
x+6= 0
x= -6
x-3=0
x= 3
The question asks for the POSITIVE integer, so...
ANSWER: x= 3
Hope this helped! :)
sum= add
more than= add
is= equal sign
square of= multiply the # by itself
x^2 + (x+3)^2= 45
x^2 + (x+3)(x+3)= 45
x^2 + x^2 + 3x + 3x + 9 = 45
combine like terms
2x^2 + 6x + 9= 45
subtract 9 from both sides
2x^2 + 6x= 36
reduce by dividing everything by 2
x^2 + 3x= 18
subtract 18 from both sides
x^2 + 3x - 18= 0
factor
(x+6)(x-3)= 0
x+6= 0
x= -6
x-3=0
x= 3
The question asks for the POSITIVE integer, so...
ANSWER: x= 3
Hope this helped! :)
The positive integer is [tex]3[/tex]
Let the number be [tex]a[/tex]
square of [tex]a = a^{2}[/tex]
Square of [tex]3[/tex] more than [tex]a[/tex] = [tex](3+a)^{2}[/tex]
[tex](3 + a)^{2} = (3+a)(3+a) = 9 + 3a + 3a + a^{2} = a^{2} + 6a + 9[/tex]
[tex]a^{2} + a^{2} + 9a + 9 = 45[/tex]
[tex]2a^{2} + 6a + 9 = 45[/tex]
Subtract 9 from both sides :
[tex]2a^{2} + 6a = 45 - 9[/tex]
[tex]2a^{2} + 6a = 36[/tex]
Divide through by 2
[tex]a^{2} + 3a = 18\\a^{2} + 3a - 18 = 0[/tex]
Factorize :
[tex]a^{2} + 6a - 3a - 18 = 0\\a(a + 6) - 3(a + 6) = 0\\a + 6 = 0\\or\\a - 3 = 0[/tex]
[tex]a = 3 ;\\or\\a = - 6[/tex]
since, a is a positive integer, then [tex]a = 3[/tex]
Learn more : https://brainly.com/question/18796573
Learn more : https://brainly.com/question/18796573