Read the proof. Given: m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° Prove: △HKJ ~ △LNP Statement Reason 1. m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° 1. given 2. m∠H + m∠J + m∠K = 180° 2. ? 3. 30° + 50° + m∠K = 180° 3. substitution property 4. 80° + m∠K = 180° 4. addition 5. m∠K = 100° 5. subtraction property of equality 6. m∠J = m∠P; m∠K = m∠N 6. substitution 7. ∠J ≅ ∠P; ∠K ≅ ∠N 7. if angles are equal then they are congruent 8. △HKJ ~ △LNP 8. AA similarity theorem Which reason is missing in step 2? CPCTC definition of supplementary angles triangle parts relationship theorem triangle angle sum theorem

Respuesta :

Answer:

Step-by-step explanation:

Given: m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100°

To prove: △HKJ ~ △LNP

Proof:

Step 1. m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° (Given)

Step 2. m∠H + m∠J + m∠K = 180° (Triangle angle sum theorem)

Step 3. 30° + 50° + m∠K = 180°(substitution property)

Step 4. 80° + m∠K = 180°(addition Property)

Step 5. m∠K = 100°(subtraction property of equality)

Step 6. m∠J = m∠P; m∠K = m∠N(substitution)

Step 7. ∠J ≅ ∠P; ∠K ≅ ∠N (If angles are equal then they are congruent)

Step 8. △HKJ ~ △LNP( AA similarity theorem)

Hence proved.

Thus, the missing step in 2 is (Triangle angle sum theorem)

Answer:

D) triangle angle sum theorem

Step-by-step explanation:

Just finished the test!!