Respuesta :

Try this option (see the attached picture).
Ver imagen evgeniylevi

Following are the calculation to the given function:

Given:

[tex]\bold{z''+8z'=0}[/tex]

To find:

real-valued=?

Solution:

Considering the differential equation that is: [tex]\bold{z''+8z'=0}[/tex]

When the auxiliary equation of the differential equation is:

[tex]\\ \bold{m^2 +8m =0}\\\\\bold{m(m+8) = 0 }\\\\\bold{m =0 \ \ \ \ \ \ \ m+8=0 }\\\\\bold{m =0 \ \ \ \ \ \ \ m=-8 }\\\\[/tex]

roots= [tex]\bold{0, \ -8}[/tex]

Calculating the general solution:

[tex]\bold{Z= c_1e^{0t}+C_2.e^{-8t}}\\\\ \bold{Z= c_1e+C_2.e^{-8t}}\\\\[/tex]

Learn more:

brainly.com/question/7508408