Respuesta :
The missing number is the square-root of the constant term on the left-hand-side, which equals sqrt(1/16)=1/sqrt(16)=1/4.
Check:
(x+1/4)^2=x^2+2*(1/4)x+(1/4)^2=x^2+x/2+1/16. ok
Answer: x= 1/4
Check:
(x+1/4)^2=x^2+2*(1/4)x+(1/4)^2=x^2+x/2+1/16. ok
Answer: x= 1/4
Answer:
[tex]\frac{1}{4}[/tex]
Step-by-step explanation:
we have
[tex]x^{2} +\frac{1}{2}x+\frac{1}{16}=\frac{4}{9}[/tex]
we know that
[tex](x+a)^{2}=x^{2}+2ax+a^{2}[/tex]
in this problem
[tex]2ax=\frac{1}{2}x[/tex] ------> [tex]a=\frac{1}{4}[/tex]
[tex]a^{2}=\frac{1}{16}[/tex] -----> [tex]a=\frac{1}{4}[/tex]
so
[tex]x^{2} +\frac{1}{2}x+\frac{1}{16}=(x+\frac{1}{4})^{2}[/tex]
the missing number in the left side is [tex]\frac{1}{4}[/tex]