Respuesta :

To find the slope you do [tex] \frac{y_{2}- y_{1} }{ x_{2}- x_{1} } [/tex] so if 4 is [tex] y_{2} [/tex] and 0 is [tex] y_{1} [/tex] and 6 is [tex] x_{2} [/tex] and 2 is [tex] x_{1} [/tex] then you substitute the variables and get [tex] \frac{4-0}{6-2} [/tex] which equals 4/4 which is 1. So (D) 1 is the answer.

Answer:

The slope of the line containing the points V(2,0) and W(6,4) is 1 .

Option (D) is correct .

Step-by-step explanation:

The slope of the line is defined as

[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

As given in the question

The line containing the points V(2,0) and W(6,4) .

[tex]x_{1}=2[/tex]

[tex]y_{1}=0[/tex]

[tex]x_{2}=6[/tex]

[tex]y_{2}=4[/tex]

Put all the points in the formula

[tex]m = \frac{4-0}{6-2}[/tex]

[tex]m = \frac{4}{4}[/tex]

m = 1

Therefore the slope of the line containing the points V(2,0) and W(6,4) is 1 .

Option (D) is correct .