Respuesta :
Let
y1=200 + 350x
y2=3x
for x=7
y1=200+350*7----------> y1=200+2450------> y1=2650
y2=3*7--------------------------> y2=21
then y1 > y2
(200 + 350x) > (3x)
the answer is
(200 + 350x) > (3x)
the solution of this inequality is
350x-3x > -200-----------> 347x > -200
x > -0.5764
the solution is the interval (-0.5764, ∞)
y1=200 + 350x
y2=3x
for x=7
y1=200+350*7----------> y1=200+2450------> y1=2650
y2=3*7--------------------------> y2=21
then y1 > y2
(200 + 350x) > (3x)
the answer is
(200 + 350x) > (3x)
the solution of this inequality is
350x-3x > -200-----------> 347x > -200
x > -0.5764
the solution is the interval (-0.5764, ∞)
Answer:
When x = 7, the first equation has the greater value.
Step-by-step explanation:
Substitute 7 in for x, so:
y = 200 + 350x ----------> y = 200 + 350(7)
y = 3^x ---------> y = 3^7
y = 200 + 350(7) = 2,650
y = 3^7 = 2,187
2,650 is greater than 2,187.
Therefore, [tex]y = 200 + 350x>y = 3^x[/tex].
Hope I helped, :)