Given the following functions f(x) and g(x), solve f[g(10)] and select the correct answer below:

f(x) = 10x + 8

g(x) = x + 9


A. 2,052

B. 98

C. 190

D. 198

Respuesta :

g(10) = 10 + 9 = 19

f[g(10)]  = 10(19) + 8 = 190 + 8 = 198

answer
D. 198

Answer:

Option D is correct.

[tex]f[g(10)][/tex] = 198

Step-by-step explanation:

Given the function:

[tex]f(x) = 10x+8[/tex]

[tex]g(x) = x+9[/tex]

Solve: [tex]f[g(10)][/tex]

First calculate:

f[g(x)]

Substitute the function g(x)

[tex]f[x+9][/tex]

Replace x with x+9 in the function f(x) we get;

[tex]f(x+9) = 10(x+9)+8[/tex]

The distributive property says that:

[tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

Using distributive property:

[tex]f(x+9) = 10x+90+8=10x+98[/tex]

⇒[tex]f[g(x)] = 10x+98[/tex]

Put x = 10 we get;

[tex]f[g(10)] =10(10)+98=100+98=198 [/tex]

Therefore, the value of  [tex]f[g(10)][/tex] is 198