Respuesta :

Answer:

At 430.34 K the reaction will be at equilibrium, at  T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.

Explanation:

1) Variables:

G = Gibbs energy
H = enthalpy
S = entropy

2) Formula (definition)

G = H + TS

=> ΔG = ΔH - TΔS

3) conditions

ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction

4) Assuming the data given correspond to ΔH and ΔS

ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K

=>  T = [ΔH - ΔG] / ΔS

ΔG = 0 =>  T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K

This is, at 430.34 K the reaction will be at equilibrium, at  T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.

The answer is "It is spontaneous at 500 k"