contestada

Complete the sentence below. If (3x2 + 22x + 7) ÷(x + 7) = 3x + 1, then (x + 7)( ) =

Respuesta :

The rest of the statement is (3x+1) = 3x²+22x+7.

The divisor is one factor, and the quotient is the second factor.  The factors get multiplied to make the dividend.

Answer:

Complete sentence is (x+7)(3x+1)=3x²+22x+7

Step-by-step explanation:

If [tex](3x^2+22x+7)\div(x+7)=3x+1[/tex]

We need to write into another form

if [tex]\dfrac{p(x)}{q(x)}=r(x)[/tex] then [tex]p(x)=r(x)\times q(x)[/tex]

[tex]\dfrac{3x^2+22x+7}{x+7}=3x+1[/tex]

[tex]p(x)=3x^2+22x+7[/tex]

[tex]q(x)=x+7[/tex]

[tex]r(x)=3x+1[/tex]

We can write as

[tex](x+7)\times \underline{(3x+1)}=\underline{3x^2+22x+7}[/tex]

Thus, Complete sentence is (x+7)(3x+1)=3x²+22x+7