The difference of two numbers is 44 1 /2 . If the smaller of the two numbers increases 7 times then the difference will be 10 3/14 . Find the numbers.

Respuesta :

hello

The difference of two numbers is 44 1/2. 
If the smaller of the two numbers increases 7 times 
the difference will be 10 3/14. 
Find the numbers? 
x - y = 44 1/2 
x - 7y = 10 3/14 
6y = 34 2/7 
y = 40/7 
x = 703/14

Have a nice day 

Required numbers as per the given condition are [tex]50\frac{3}{14}[/tex] and [tex]5\frac{5}{7}[/tex].

What is a number?

" A number is defined as the count of any given quantity."

According to the question,

[tex]'x'[/tex] represents the greater number

[tex]'y'[/tex] represents the smaller number

As per the given condition equation we have,

[tex]x- y = 44\frac{1}{2} \\\\\implies x-y = \frac{89}{2}[/tex]                            ______[tex](1)[/tex]

[tex]x-7y =10 \frac{3}{14} \\\\\implies x-7y = \frac{143}{14}[/tex]                        ______[tex](2)[/tex]

Subtract equation [tex](2)[/tex]  from  [tex](1)[/tex] to get the required numbers,

[tex]6y = \frac{89}{2} -\frac{143}{14} \\\\\implies 6y = \frac{623-143}{14}\\ \\\implies 6y = \frac{480}{14}\\ \\\implies y = \frac{40}{7}\\ \\\implies y = 5\frac{5}{7}[/tex]

Substitute the value of [tex]'y'[/tex] in [tex](1)[/tex] we get,

[tex]x= \frac{89}{2}+ \frac{40}{7} \\\\\implies x = \frac{623+80}{14} \\\\\implies x= \frac{703}{14}\\ \\\implies x= 50\frac{3}{14}[/tex]

Hence, required numbers as per the given condition are [tex]50\frac{3}{14}[/tex] and [tex]5\frac{5}{7}[/tex].

Learn more about numbers here

brainly.com/question/17429689

#SPJ2