Respuesta :
Consider this option:
if given 2x³+5x²-8x-20 ,then it is possible to make up two groups:
(2x³-8x) and (5x²-20).
2x³+5x²-8x-20=(2x³-8x)+(5x²-20)=2x(x²-4)+5(x²-4)=(x²-4)(2x+5).
Then it is possible to re-write (x²-4) as ((x+2)(x-2)):
(x²-4)(2x+5)=(x+2)(x-2)(2x+5).
answer: (x+2)(x-2)(2x+5)
if given 2x³+5x²-8x-20 ,then it is possible to make up two groups:
(2x³-8x) and (5x²-20).
2x³+5x²-8x-20=(2x³-8x)+(5x²-20)=2x(x²-4)+5(x²-4)=(x²-4)(2x+5).
Then it is possible to re-write (x²-4) as ((x+2)(x-2)):
(x²-4)(2x+5)=(x+2)(x-2)(2x+5).
answer: (x+2)(x-2)(2x+5)
Answer:
(x-2) ( x+2) ( 2x + 5)
Step-by-step explanation:
We will factor the given expression by grouping
The expression is 2x³ + 5x² - 8x - 20
= ( 2x³ + 5x² ) - ( 8x + 20 )
= x² (2x + 5) - 4(2x + 5) [ distributive property ]
= (a² -4) ( 2x + 5)
= (x-2) (x+2) (2x+5) [since a² - b² = ( a+b ) (a-b) ]
Then the factored form of the expression will be (x-2) ( x+2) ( 2x + 5)