Respuesta :

the equation of a circle is defined by:  (x - h)² + (y - k)² = r²  where
(h,k) represents the center of your circle and r = the radius

So (x - 2)² + (y + 8)² = 121 is your equation

Answer:

The  equation of circle is [tex]x^2+y^2-4x+16y-61=0[/tex]        

Step-by-step explanation:

Given : A circle with a center at (2, –8) and a radius of 11.

To find : Which equation represents a circle?

Solution :

The general equation of the circle is

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Where, (h,k)=(2,-8) is the center and r is the radius r=11.

Substitute the value in the formula,

[tex](x-2)^2+(y-(-8))^2=11^2[/tex]

[tex]x^2-4x+4+y^2+16y+64=121[/tex]

[tex]x^2+y^2-4x+16y+60=121[/tex]

[tex]x^2+y^2-4x+16y-61=0[/tex]

Therefore, The  equation of circle is [tex]x^2+y^2-4x+16y-61=0[/tex]