Respuesta :
--------------------------------------------------------
Find the ratio of thel length
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2})^3 = \dfrac{V_1}{V_2} [/tex]
--------------------------------------------------------
Substitute the value of the given volume
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2})^3 = (\dfrac{512}{3375} )[/tex]
--------------------------------------------------------
Cube Root both sides
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2}) = \sqrt[3]{\dfrac{512}{3375} } [/tex]
--------------------------------------------------------
Ratio of the length of the 2 similar rectangle
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2}) = \dfrac{8}{15} [/tex]
-----------------------------------------
Find the area of the larger figure
-----------------------------------------
[tex] (\dfrac{L_1}{L_2})^2 = \dfrac{A_1}{A_2} [/tex]
--------------------------------------------------------
Substitute the known number to the ratio
--------------------------------------------------------
[tex](\dfrac{8}{15})^2 = \dfrac{128}{A_2}[/tex]
--------------------------------------------------------
Evaluate the left hand side
--------------------------------------------------------
[tex]\dfrac{64}{225} = \dfrac{128}{A_2}[/tex]
--------------------------------------------------------
Cross multiply and Solve
--------------------------------------------------------
[tex]64 \times A_2=128 \times 225[/tex]
[tex]A_2 = 28800 \div 64[/tex]
[tex]A_2 = 450 \ mm^2[/tex]
--------------------------------------------------------
Answer: Area = 450 mm²
--------------------------------------------------------
Find the ratio of thel length
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2})^3 = \dfrac{V_1}{V_2} [/tex]
--------------------------------------------------------
Substitute the value of the given volume
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2})^3 = (\dfrac{512}{3375} )[/tex]
--------------------------------------------------------
Cube Root both sides
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2}) = \sqrt[3]{\dfrac{512}{3375} } [/tex]
--------------------------------------------------------
Ratio of the length of the 2 similar rectangle
--------------------------------------------------------
[tex] (\dfrac{L_1}{L_2}) = \dfrac{8}{15} [/tex]
-----------------------------------------
Find the area of the larger figure
-----------------------------------------
[tex] (\dfrac{L_1}{L_2})^2 = \dfrac{A_1}{A_2} [/tex]
--------------------------------------------------------
Substitute the known number to the ratio
--------------------------------------------------------
[tex](\dfrac{8}{15})^2 = \dfrac{128}{A_2}[/tex]
--------------------------------------------------------
Evaluate the left hand side
--------------------------------------------------------
[tex]\dfrac{64}{225} = \dfrac{128}{A_2}[/tex]
--------------------------------------------------------
Cross multiply and Solve
--------------------------------------------------------
[tex]64 \times A_2=128 \times 225[/tex]
[tex]A_2 = 28800 \div 64[/tex]
[tex]A_2 = 450 \ mm^2[/tex]
--------------------------------------------------------
Answer: Area = 450 mm²
--------------------------------------------------------