Respuesta :

We have to find the value of 'x' in [tex] \sin (x+22)^{\circ}=\cos (2x-7)^{\circ} [/tex]

By using the complementary angle formula which states:

[tex] \cos (90-\Theta )=\sin \Theta [/tex]

Now,

[tex] \cos (90^{\circ}-(x+22)^{\circ})=\cos (2x-7)^{\circ} [/tex]

Therefore, we get

[tex] 90-(x+22)= (2x-7) [/tex]

[tex] 90-x-22= (2x-7) [/tex]

[tex] 68=3x -7 [/tex]

[tex] 75=3x [/tex]

[tex] x=25^{\circ} [/tex]

xPain

Answer:

Lets go by a step-by-step process.

Step-by-step explanation:

\cos (90-\Theta )=\sin \Theta  

Now,

\cos (90^{\circ}-(x+22)^{\circ})=\cos (2x-7)^{\circ}

Now we have...

 90-(x+22)= (2x-7)

90-x-22= (2x-7)

68=3x -7

75=3x

x=25^{\circ}