30 POINTS + BRAINLIEST!

We have to find the value of 'x' in [tex] \sin (x+22)^{\circ}=\cos (2x-7)^{\circ} [/tex]
By using the complementary angle formula which states:
[tex] \cos (90-\Theta )=\sin \Theta [/tex]
Now,
[tex] \cos (90^{\circ}-(x+22)^{\circ})=\cos (2x-7)^{\circ} [/tex]
Therefore, we get
[tex] 90-(x+22)= (2x-7) [/tex]
[tex] 90-x-22= (2x-7) [/tex]
[tex] 68=3x -7 [/tex]
[tex] 75=3x [/tex]
[tex] x=25^{\circ} [/tex]
Answer:
Lets go by a step-by-step process.
Step-by-step explanation:
\cos (90-\Theta )=\sin \Theta
Now,
\cos (90^{\circ}-(x+22)^{\circ})=\cos (2x-7)^{\circ}
Now we have...
90-(x+22)= (2x-7)
90-x-22= (2x-7)
68=3x -7
75=3x
x=25^{\circ}