Respuesta :
She would need 78.1 feet.
We first find the measure of the missing angle:
180-65-44 = 71
Now we use the law of sines:
sin A/a = sin B/b = sin C/c
With our information we have:
sin71/29 = sin65/a
Cross multiply:
a sin 71= 29 sin 65
Divide both sides by sin 71:
(a sin 71)/(sin 71) = (29 sin 65)/(sin 71)
a = 27.8
Using it again:
(sin 71)/29 = (sin 44)/b
Cross multiply:
b sin 71 = 29 sin 44
Divide both sides by sin 71:
(b sin 71)/(sin 71) = (29 sin 44)/(sin 71)
b = 21.3
Adding the sides:
21.3 + 27.8 + 29 = 78.1
We first find the measure of the missing angle:
180-65-44 = 71
Now we use the law of sines:
sin A/a = sin B/b = sin C/c
With our information we have:
sin71/29 = sin65/a
Cross multiply:
a sin 71= 29 sin 65
Divide both sides by sin 71:
(a sin 71)/(sin 71) = (29 sin 65)/(sin 71)
a = 27.8
Using it again:
(sin 71)/29 = (sin 44)/b
Cross multiply:
b sin 71 = 29 sin 44
Divide both sides by sin 71:
(b sin 71)/(sin 71) = (29 sin 44)/(sin 71)
b = 21.3
Adding the sides:
21.3 + 27.8 + 29 = 78.1
To find the angle opposite from the side of our triangle, we are going to take advantage of the fact that the sum of the interior angles of a triangle is always 180°:
[tex]A+65+44=180[/tex]
[tex]A+109=180[/tex]
[tex]A=180-109[/tex]
[tex]A=71[/tex]
To find the other two sides of our triangle, we are going to use the law of sines:
[tex] \frac{a}{sinA} = \frac{b}{sinB} [/tex]
[tex] \frac{29}{sine(71)} = \frac{b}{sine(65)} [/tex]
[tex]b= \frac{29sine(65)}{sine(71)} [/tex]
[tex]b=27.8[/tex]
[tex] \frac{a}{sineA} = \frac{c}{sineC} [/tex]
[tex] \frac{29}{sine(71)} = \frac{c}{sine(44)} [/tex]
[tex]c= \frac{29sine(44)}{sine(71)} [/tex]
[tex]c=21.3[/tex]
Now, we have all the sides of our triangle. So, the only thing left to find the length of the fence needed to enclose the garden, is add them:
[tex]P=a+b+c[/tex]
[tex]P=29+27.8+21.3[/tex]
[tex]P=78.1[/tex]
We can conclude that the length of the fence needed to enclose the garden is 78.1 feet.
[tex]A+65+44=180[/tex]
[tex]A+109=180[/tex]
[tex]A=180-109[/tex]
[tex]A=71[/tex]
To find the other two sides of our triangle, we are going to use the law of sines:
[tex] \frac{a}{sinA} = \frac{b}{sinB} [/tex]
[tex] \frac{29}{sine(71)} = \frac{b}{sine(65)} [/tex]
[tex]b= \frac{29sine(65)}{sine(71)} [/tex]
[tex]b=27.8[/tex]
[tex] \frac{a}{sineA} = \frac{c}{sineC} [/tex]
[tex] \frac{29}{sine(71)} = \frac{c}{sine(44)} [/tex]
[tex]c= \frac{29sine(44)}{sine(71)} [/tex]
[tex]c=21.3[/tex]
Now, we have all the sides of our triangle. So, the only thing left to find the length of the fence needed to enclose the garden, is add them:
[tex]P=a+b+c[/tex]
[tex]P=29+27.8+21.3[/tex]
[tex]P=78.1[/tex]
We can conclude that the length of the fence needed to enclose the garden is 78.1 feet.