Respuesta :

We see that this right triangle has a 30°-angle, meaning the remaining angle must be 60° (sum of angles must be 180°). This means the triangle is what we call a special right triangle, specifically, a 30°-60°-90° triangle.

The sides of such a triangle are in a ratio where the shortest leg (across from the 30°-angle) is x, the hypotenuse is 2x, and the longest leg is x√3.

Here, we are given the shortest leg, 53.57 cm. To get the hypotenuse, we double this length to get 107.14 cm.
------------------------------------------------------------
[tex]\text {Use sin x = } \frac{opp}{hyp} [/tex]
------------------------------------------------------------

[tex]sin (30) = \dfrac{53.57}{y} [/tex]

[tex]y = \dfrac{53.57}{sin (30)} [/tex]

[tex]y = 107.14 \ cm[/tex]

------------------------------------------------------------
Answer: 107.14 cm
------------------------------------------------------------