PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ HELP!!!!!!!
WILL GIVE BRAINLIEST AND 15 POINTS!!!
EXPLAIN HOW YOU GOT EVERYTHING, INCLUDING VALUES FOR A, B, C AND D!!!!!!!!!!!!!!!!!!! PLZZZZZZZZZZZZ

Using the two functions listed below, insert numbers in place of the letters a, b, c, and d so that f(x) and g(x) are inverses.

f(x)= x+a
------
b

g(x)=cx−d

Respuesta :

f(x) = x + 1
          ------
            b

g(x) = cx - d


flip values of x and y in each equation, then solve for y:


x = y + a
      -------
         b

y = a - bx


``````````````````````````````````````````````````````````

x = cy - d

y = x + d
      -------
         c

Answer:

[tex]a = 2; \ d = 2; \ c=1; \ b=1[/tex]

Step-by-step explanation:

Two functions are inverse where their composition results in a variable only:

[tex]f(g(x))=x[/tex]

So, we have to insert the right numbers in place of letters a, b, c and d, to fulfil this definition. Those value would be: [tex]a = 2; \ d = 2; \ c=1; \ b=1[/tex]

Replacing these values, we have:

[tex]f(x)=x+2[/tex]

[tex]g(x)=1x-2=x-2[/tex]

Applying the composition [tex]f(g(x))[/tex]:

[tex]f(g(x))=\frac{cx-d+a}{b}[/tex]

We observe that with this values, these functions are inverse, because it composition results x.

[tex]f(g(x))=\frac{1x-2+2}{1}=x[/tex]

Therefore, the values are [tex]a = 2; \ d = 2; \ c=1; \ b=1[/tex]