Suppose the scores of seven members of a women's golf team are 68, 62, 60, 64, 70, 66, and 72. find the mean, median, and midrange.
a. mean = 64, median = 64, midrange = 64
b. mean = 65, median = 64, midrange = 66
c. mean = 66, median = 77, midrange = 65
d. mean = 66, median = 66, midrange = 66

Respuesta :

median = 66, mean = 66 and midrange = 66
Answer: (d) mean = 66, median = 66, midrange = 66

--------------------------------------------------------------------------
Find Mean
--------------------------------------------------------------------------

To find the mean, we add up all the scores and divide the total by the number of scores. 

[tex]\text {mean = } \dfrac{\text {total of all the scores}}{\text {number of scores}} [/tex]

[tex]\text {mean = } \dfrac{68 + 62 + 60 + 64 + 70 + 66 + 72 }{7} [/tex]

[tex]\text {mean = } \dfrac{462}{7} [/tex]

[tex]\text {mean = } 66[/tex]

--------------------------------------------------------------------------
Find Median
--------------------------------------------------------------------------

To find the median, we arrange the number in ascending order and look for the middle number.

Ascending order : 60, 62, 64, 66, 68, 70, 72
66 is in the middle, so 66 is the median

Median = 66

--------------------------------------------------------------------------
Find Midrange
--------------------------------------------------------------------------

To find midrange, we find the average of the min and max value.

[tex]\text {midrange = } \dfrac{60 + 72}{2} [/tex]

[tex]\text {midrange = } \dfrac{132}{2} [/tex]

[tex]\text {midrange = } 66[/tex]

--------------------------------------------------------------------------
Answer mean = 66, median = 66, midrange = 66
--------------------------------------------------------------------------