Hey there :)
We know the distance formula is:
D = [tex] \sqrt{(x2-x1)^2+(y2-y1)^2} [/tex]
1) Coordinates are: ( -10, -5 ) , ( 8 , 5 )
↓ ↓ ↓ ↓
x₁ y₁ x₂ y₂
We plug in the values
D =[tex] \sqrt{(8 -(-10))^2+(5-(-5))^2} [/tex]
≈20.59 ≈ 20.6 (nearest tenth)
We do the same for the rest
2) Coordinates are ( 10 , 0 ) , ( -2 , 1 )
D = [tex] \sqrt{(-2-10)^2+(1-0)^2} [/tex]
≈ 12.04 ≈ 12.0 (nearest tenth)
3) Coordinates are ( 4 , 8 ) , ( 7 , -8 )
D = [tex] \sqrt{((7-4)^2+(-8-8)^2} [/tex]
≈ 16.27 ≈ 16.3 (nearest tenth)
4) Coordinates are ( -10, -4 ) , ( 8 , 8 )
D = [tex] \sqrt{(8-(-10))^2+(8-(-4))^2} [/tex]
≈ 21.6 (nearest tenth)
5) Coordinates are ( 6 , -3 ) , ( -8 , 9 )
D = [tex] \sqrt{(-8-6)^2 + (9-(-3))^2} [/tex]
≈ 18.4 (nearest tenth)
You can find the matching below :)