Respuesta :
if x + 1 is a factor then f(-1) will = zero.
f(-1) = 8 so its not answer a).
f(3) = 0 so the answer is x - 3
Its c.
f(-1) = 8 so its not answer a).
f(3) = 0 so the answer is x - 3
Its c.
ANSWER
Using the remainder theorem,
[tex]p( 3) = 0[/tex]
therefore
[tex]x - 3[/tex]
is a factor of the polynomial.
EXPLANATION
The given polynomial is
[tex]p(x) = {x}^{3} - 2 {x}^{2} - 5x + 6[/tex]
According to the remainder theorem if
[tex]p(a) = 0[/tex]
then,
[tex]x - a[/tex]
is a factor of the polynomial.
For the first option,
[tex]p( - 1) = {( - 1)}^{3} - 2 {( - 1)}^{2} - 5( - 1) + 6[/tex]
[tex]p( - 1) = - 1 - 2 + 5 + 6[/tex]
[tex]p( - 1) = 8[/tex]
Since
[tex]p( - 1) \ne0[/tex]
[tex]x + 1[/tex]
is not a factor of the polynomial.
For the second option,
[tex]p( 2) = {( 2)}^{3} - 2 {( 2)}^{2} - 5( 2) + 6[/tex]
[tex]p( 2) = 8 - 8 - 10+ 6[/tex]
[tex]p( 2) = - 4[/tex]
Since
[tex]p( 2) \ne0[/tex]
[tex]x - 2[/tex]
is also not a factor.
For the third option,
[tex]p( 3) = {( 3)}^{3} - 2 {( 3)}^{2} - 5( 3) + 6[/tex]
[tex]p( 3) = 27 - 18 - 15 + 6[/tex]
[tex]p( 3) = - 6 + 6[/tex]
[tex]p( 3) = 0[/tex]
Therefore
[tex]x - 3[/tex]
is a factor of the given polynomial.
For the last option,
[tex]p( - 3) = {( - 3)}^{3} - 2 {( - 3)}^{2} - 5( - 3) + 6[/tex]
[tex]p( - 3) = - 27- 18 + 15+ 6[/tex]
[tex]p( - 3) = - 24[/tex]
This is again not a factor.
The correct answer is C.
Using the remainder theorem,
[tex]p( 3) = 0[/tex]
therefore
[tex]x - 3[/tex]
is a factor of the polynomial.
EXPLANATION
The given polynomial is
[tex]p(x) = {x}^{3} - 2 {x}^{2} - 5x + 6[/tex]
According to the remainder theorem if
[tex]p(a) = 0[/tex]
then,
[tex]x - a[/tex]
is a factor of the polynomial.
For the first option,
[tex]p( - 1) = {( - 1)}^{3} - 2 {( - 1)}^{2} - 5( - 1) + 6[/tex]
[tex]p( - 1) = - 1 - 2 + 5 + 6[/tex]
[tex]p( - 1) = 8[/tex]
Since
[tex]p( - 1) \ne0[/tex]
[tex]x + 1[/tex]
is not a factor of the polynomial.
For the second option,
[tex]p( 2) = {( 2)}^{3} - 2 {( 2)}^{2} - 5( 2) + 6[/tex]
[tex]p( 2) = 8 - 8 - 10+ 6[/tex]
[tex]p( 2) = - 4[/tex]
Since
[tex]p( 2) \ne0[/tex]
[tex]x - 2[/tex]
is also not a factor.
For the third option,
[tex]p( 3) = {( 3)}^{3} - 2 {( 3)}^{2} - 5( 3) + 6[/tex]
[tex]p( 3) = 27 - 18 - 15 + 6[/tex]
[tex]p( 3) = - 6 + 6[/tex]
[tex]p( 3) = 0[/tex]
Therefore
[tex]x - 3[/tex]
is a factor of the given polynomial.
For the last option,
[tex]p( - 3) = {( - 3)}^{3} - 2 {( - 3)}^{2} - 5( - 3) + 6[/tex]
[tex]p( - 3) = - 27- 18 + 15+ 6[/tex]
[tex]p( - 3) = - 24[/tex]
This is again not a factor.
The correct answer is C.