Respuesta :
polar coordinates (r, a)
"a" is angle in radians
x = rcos(a)
y = rsin(a)
use the given values.
x = -2cos(3pi/2)
x = 0
y = -2sin(3pi/2)
y = 2
C. (0,2)
"a" is angle in radians
x = rcos(a)
y = rsin(a)
use the given values.
x = -2cos(3pi/2)
x = 0
y = -2sin(3pi/2)
y = 2
C. (0,2)
Answer:
C.(0,2) rectangular coordinate pairs represents the same point.
Step-by-step explanation:
Given : polar coordinates (-2, 3pi/2).
To find : which of the following rectangular coordinate pairs represents the same point.
Solution : We have given that polar coordinates (-2, 3pi/2).
Polar coordinates : is a two-dimensional system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction ( r , Ф)
Here, r = -2 , Ф = 3pi/2
Representation of polar coordinates :
x = r cosФ.
Plugging the values of r and Ф
x = -2 cos( 3 pi/2)
x = 0
y = r sinФ
Plugging the values or r and Ф
y = -2 sin(3pi/2)
y = -2 (-1)
y = 2
Coordinates (x, y) = (0 ,2)
Therefore, C.(0,2) rectangular coordinate pairs represents the same point.