Respuesta :
You need an even number of reflections to get the original figure, leaving only A and D as potentially viable choices.
The reflection across the x-axis makes the tranformation (x, y) ⇒ (x, -y).
The reflection across the line y=x makse the transformation (x, y) ⇒ (y, x).
The two pairs of transformations of A give
(x, y) ⇒ (x, -y) ⇒ (-y, x) ⇒ (-y, -x) ⇒ (-x, -y) . . . . . not the original
The reflection across the y-axis makes the transformation (x, y) ⇒ (-x, y).
The two pairs of transformations of D give
(x, y) ⇒ (y, x) ⇒ (y, -x) ⇒ (-x, y) ⇒ (x, y) . . . . . . the original point
Selection D is appropriate.
The reflection across the x-axis makes the tranformation (x, y) ⇒ (x, -y).
The reflection across the line y=x makse the transformation (x, y) ⇒ (y, x).
The two pairs of transformations of A give
(x, y) ⇒ (x, -y) ⇒ (-y, x) ⇒ (-y, -x) ⇒ (-x, -y) . . . . . not the original
The reflection across the y-axis makes the transformation (x, y) ⇒ (-x, y).
The two pairs of transformations of D give
(x, y) ⇒ (y, x) ⇒ (y, -x) ⇒ (-x, y) ⇒ (x, y) . . . . . . the original point
Selection D is appropriate.
When a point is reflected, it must be reflected across a line. The reflection of ABCDEF that carries it onto itself is:
D. y=x, x-axis, y=x, y-axis
Of the given options, (D) is correct.
The proof is as follows:
Using coordinate point A.
We have:
[tex]A = (0,1)[/tex]
The first reflection in (D) is [tex]y = x[/tex]
This means that:
[tex](x,y) \to (y,x)[/tex]
So, we have:
[tex](0,1) \to (1,0)[/tex]
The next is across the x-axis.
The rule of this reflection is: [tex](x,y) \to (x,-y)[/tex]
So, we have:
[tex](1,0) \to (1,0)[/tex]
The next is [tex]y = x[/tex]
This means that: [tex](x,y) \to (y,x)[/tex]
So, we have:
[tex](1,0) \to (0,1)[/tex]
The last is across the y-axis.
The rule of this reflection is: [tex](x,y) \to (-x,y)[/tex]
So, we have:
[tex](0,1) \to (0,1)[/tex]
Compare the end point to point A;
We can see that both points are the same i.e. (0,1)
Hence, the set of reflections would carry hexagon ABCDEF onto itself is (d)
Read more about reflections at:
https://brainly.com/question/17983440