If A, B, and C represent three matrices of the same size and (A + B) + C = 0, then which statement is true?

a. a11 =0 and b11= 0

b. a11 - ( b11 + c11 ) = 0

c. a11 + ( b11 + c11 ) = 0

d. a11 multiply ( b11 + c11 ) = 0

Respuesta :

Answer: Option c. a11 + ( b11 + c11 ) = 0 

Answer:

The correct option is c.

Step-by-step explanation:

Given information: A, B, and C represent three matrices of the same size and (A + B) + C = 0.

Let the size of A, B, and C is m×n.

[tex]A=\begin{bmatrix}a_{11}} & a_{12}} &...& a_{1n}\\ a_{21}} & a_{22}} &...& a_{2n}\\ ... & ... & ... & ...\\ a_{m1}} & a_{m2}} &...& a_{mn}\\ \end{bmatrix}[/tex]

[tex]B=\begin{bmatrix}b_{11}} & b_{12}} &...& b_{1n}\\ b_{21}} & b_{22}} &...& b_{2n}\\ ... & ... & ... & ...\\ b_{m1}} & b_{m2}} &...& b_{mn}\\ \end{bmatrix}[/tex]

[tex]C=\begin{bmatrix}c_{11}} & c_{12}} &...& c_{1n}\\ c_{21}} & c_{22}} &...& c_{2n}\\ ... & ... & ... & ...\\ c_{m1}} & c_{m2}} &...& c_{mn}\\ \end{bmatrix}[/tex]

It is given that

(A + B) + C = 0

[tex]\begin{bmatrix}a_{11}} & a_{12}} &...& a_{1n}\\ a_{21}} & a_{22}} &...& a_{2n}\\ ... & ... & ... & ...\\ a_{m1}} & a_{m2}} &...& a_{mn}\\ \end{bmatrix}+\begin{bmatrix}b_{11}} & b_{12}} &...& b_{1n}\\ b_{21}} & b_{22}} &...& b_{2n}\\ ... & ... & ... & ...\\ b_{m1}} & b_{m2}} &...& b_{mn}\\ \end{bmatrix}+\begin{bmatrix}c_{11}} & c_{12}} &...& c_{1n}\\ c_{21}} & c_{22}} &...& c_{2n}\\ ... & ... & ... & ...\\ c_{m1}} & c_{m2}} &...& c_{mn}\\ \end{bmatrix}=0[/tex]

[tex]\begin{bmatrix}a_{11}+b_{11}+c_{11} & a_{12}+b_{12}+c_{12} &...& a_{1n}+b_{1n}+c_{1n}\\ a_{21}+b_{21}+c_{21} & a_{22}+b_{22}+c_{22} &...& a_{2n}+b_{2n}+c_{2n}\\ ... & ... & ... & ...\\ a_{m1}+b_{m1}+c_{m1} & a_{m2}+b_{m2}+c_{m2} &...& a_{mn}+b_{mn}+c_{mn}\\ \end{bmatrix}=\begin{bmatrix}0 & 0 & ... & 0\\ 0 & 0 & ... & 0\\ ... & ... & ... & ...\\ 0 & 0 & ... &0 \end{bmatrix}[/tex]

By comparing first element of first row on both the sides, we get

[tex]a_{11}+b_{11}+c_{11}=0[/tex]

[tex]a_{11}+(b_{11}+c_{11})=0[/tex]

Therefore the correct option is c.