Respuesta :
Answer:
[tex](\frac{3}{3} \times \frac{2}{3} \times \frac{3}{3})in^{3} = \frac{2}{3}in^{3}[/tex]
Step-by-step explanation:
The definition of volume is:
[tex]V=l \times b \times h[/tex]
So, in this case we have:
[tex]l = 3(\frac{1}{3}) \ in=\frac{3}{3} \ in[/tex]
[tex]b=2(\frac{1}{3}) \ in=\frac{2}{3} \ in[/tex]
[tex]h=3(\frac{1}{3}) \ in=\frac{3}{3} \ in[/tex]
Replacing all these values into volume's definition, we have:
[tex]V=\frac{3}{3} \ in \times \frac{2}{3} \ in \times\frac{3}{3} \ in\\V=\frac{2}{3} in^{3}[/tex]
