Respuesta :

The relationship of arcs is:
 S '/ S = ((1/9) * pi * 3) / (2 * pi * 3)
 Rewriting we have:
 S '/ S = ((1/9)) / (2)
 S '/ S = 1/18
 Therefore, the area of the shaded region is:
 A '= (S' / S) * A
 Where A: area of the complete circle:
 A '= (1/18) * pi * r ^ 2
 A '= (1/18) * pi * (3) ^ 2
 A '= (1/18) * pi * 9
 A '= (1/2) * pi
 Answer:
 
The area of the shaded region is:
 A '= (1/2) * pi