Respuesta :

The answer for the spaces — for this very question — is:
________________________________________________________
 " 1 " (in the first box; as a coefficient of "m") ;  and "2" (in the second box).
________________________________________________________

Explanation:
________________________________________________________

Note:  The equation in:  "slope-intercept form" is: 

" y = mx + b " ; 

The slope, or "m" , is the coefficient of "x" in the equation.

Take two points on the line.

Let us take:  "(1, 3)" ; and "(2, 4)" ;

in which:

" (x₁, y₁) " ;  and " (x₂, y₂) "  ;  →  x₁ = 1 ;  x₂ = 2 ;  y₁ = 3  ;  y₂ = 4 ; 
_______________________________________________________
 Note the formula to find the slope, "m" ,  of the line:

Take two points on the line; and use the formula: 

m =  (y₂ − y₁) / (x₂ − x₁) ;   ← We shall use our chosen points (aforementioned) ;

→  m = (4 − 3) / (2 − 1) = 1/1 = 1 ; 

So, "m = 1" ;   → In "slope-intercept form" ;  that is;  " y = mx + b " ; 

                                                 one usually, omits the "1" for "m" ; since the "1" for a slope of "1" is "implied" ;  since there is an "implied coefficient" of "1" for the variable "x" (and thus, and implied slope of "1" ; since "any value" , multiplied by "1" ; results in that same original value. 

Now, we want to obtain "b", the "y-intercept". 

We can use the formula:

" y − y₁ = m(x − x₁) " ;   We have "x₁ = 1 " ;  and "y₁ = 3" ; and "m = 1" ; 

So, let us substitute those values:

" y − 3 =  1(x − 1) " ; 
_______________________________________________________
Note the "distributive property" of multiplication:
________________________________________________
  a(b + c)   =  ab  +  ac ; 
 
  a(b − c)   =  ab −  ac .
________________________________________________
 
 → As such;  let us examine the "right-hand side of the equation", as follows:

 →  " 1(x − 1) "  = (1 * x) − (1 * 1)  = 1x − 1 = x − 1 ; 

And we can bring down the "left-hand side" of the equation; & rewrite:

→  " y − 3 = x − 1 " ; 

Now, we want to rewrite this equation in:  "slope-intercept form" ; that is: 

    " y =  mx + b " ;  with "y" being a "single variable" on the "left-hand side" of                                  the equation; with no coefficients (save for the "implied                                         coefficient" of "positive 1") ;
___________________________________________________
We have: 

→ " y − 3 = x − 1 " ; 

Add  "3"  to EACH SIDE of the equation;
   to isolate "y" on the "left-hand side" of the equation;

→   y − 3 + 3 = x − 1 + 3 ; 

to get:

→   y = x + 2 ; 

(or:  " y = 1x + 2" ;   → As aforementioned, if the slope, "m", equals "positive 1" ; 
                                  we usually omit the "1" (by convention);  when we write                                         the equation in "slope-intercept form".

Note:  This equation:  "y = 1x + 2" ; is in "slope-intercept form" ; that is:

              →   " y = mx + b " ;  

                         in which:     the slope, "m = 1 " ;  and:
                                             the "y-intercept", "b = 2" ; 
________________________________________________________
But the answer for the spaces—for this very question—is:
________________________________________________________
" 1 " (in the first box; as a coefficient of "m") ;  and " 2 " (in the second box).
________________________________________________________