Respuesta :

sin(θ)=−15/17 
cos(θ)=8/17

Answer:

Sin θ =   [tex]\frac{-15}{17}[/tex] and [tex]\frac{8}{17}[/tex].

Step-by-step explanation:

Given  : cot θ = -8/15.

To find : sin θ  and cos θ.

Solution : We have given

cot θ = [tex]\frac{-8}{15}[/tex].

cot θ =  [tex]\frac{adjacent}{opposite}[/tex].

[tex]\frac{adjacent}{opposite}[/tex] =  [tex]\frac{8}{-15}[/tex].

Hypotenuse = [tex]\sqrt{opposite^{2} +adjacent^{2} }[/tex]

Hypotenuse = [tex]\sqrt{(-15)^{2} + (8)^{2} }[/tex] .

Hypotenuse =  [tex]\sqrt{225 + 64 }[/tex] .

Hypotenuse =  [tex]\sqrt{289 }[/tex] .

Hypotenuse =17 .

Sin θ = [tex]\frac{opposite}{Hypotenuse}[/tex].

Plugging the values.

Sin θ =   [tex]\frac{-15}{17}[/tex].

Cos θ =  [tex]\frac{adjacent}{Hypotenuse}[/tex].

Cos θ =  [tex]\frac{8}{17}[/tex].

Therefore, Sin θ =   [tex]\frac{-15}{17}[/tex] and [tex]\frac{8}{17}[/tex].