Respuesta :

Answer: [tex]cot \theta =\sqrt{ \frac{19}{6} }[/tex].


Step-by-step explanation: Given sinθ= √6/5.

We know radio of [tex]Sin\theta =\frac{Opposite \ side }{Hypotenuse}[/tex].

Therefore,

[tex]\frac{Opposite \ side }{Hypotenuse}= \frac{\sqrt{6} }{5}[/tex].

Let us apply Pythagoras Theorem to find the third side(Adjacent side) of the triangle .

[tex](a)^2 + (b)^2 = (c)^2.[/tex]

[tex](\sqrt{6})^2+(b)^2=(5)^2[/tex]

[tex]6+(b)^2 = 25[/tex]

Subtracting 6 from both sides, we get

[tex]6-6+(b)^2 = 25-6[/tex]

[tex](b)^2 = 19[/tex]

[tex]b=\sqrt{19}[/tex]

Therefore, adjacent side = [tex]\sqrt{19}[/tex]

We know,

[tex]cot \theta = \frac{Adjacent \ side}{Opposite \ side}[/tex]

[tex]cot \theta =\frac{\sqrt{19} }{\sqrt{6} }[/tex]

Or

[tex]cot \theta =\sqrt{ \frac{19}{6} }[/tex].