Respuesta :

Assuming PQ is tangent to the circle, ∠OQP = 90°

 90 + 43  + x = 180° (Sum of all angles in a triangle is 180)

x = 180 - 90 - 43 = 47°

Answer: x = 47°

Answer:

Option A.

Step-by-step explanation:

We know that radius of a circle is perpendicular to its tangent at the point of tangency.

[tex]\angle OQP=90^{\circ}[/tex]

According to the angle sum property, the sum of interior angles of a triangle is 180 degrees.

Using angle sum property we get

[tex]x^{\circ}+90^{\circ}+43^{\circ}=180^{\circ}[/tex]

[tex]x^{\circ}+133^{\circ}=180^{\circ}[/tex]

[tex]x^{\circ}=180^{\circ}-133^{\circ}[/tex]

[tex]x^{\circ}=47^{\circ}[/tex]

[tex]x=47[/tex]

The value of x is 47.

Hence, the correct option is A.