Answer:
The probability that a randomly selected value will be between 660 and 680 is 0.0614
Step-by-step explanation:
we are given
mean=715
[tex]\mu=715[/tex]
standard deviation =24
[tex]\sigma=24[/tex]
At x=660:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
now, we can plug values
[tex]z=\frac{660-715}{24}[/tex]
[tex]z=-2.29167[/tex]
At x=680:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
now, we can plug values
[tex]z=\frac{680-715}{24}[/tex]
[tex]z=-1.45833[/tex]
now, we can find probability
[tex]P(-2.29167\leq z\leq -1.45833)[/tex]
we can use table
and we get
[tex]P(-2.29167\leq z\leq -1.45833)=0.0614[/tex]