A set of data follows a nonstandard normal distribution curve. Find the probability that a randomly selected value will be between 660 and 680 given a mean of 715 and a standard deviation of 24.

A.
0.0611

B.
0.7100

C.
0.8300

D.
0.9169

Respuesta :

Answer:

The probability that a randomly selected value will be between 660 and 680 is 0.0614

Step-by-step explanation:

we are given

mean=715

[tex]\mu=715[/tex]

standard deviation =24

[tex]\sigma=24[/tex]

At x=660:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

now, we can plug values

[tex]z=\frac{660-715}{24}[/tex]

[tex]z=-2.29167[/tex]

At x=680:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

now, we can plug values

[tex]z=\frac{680-715}{24}[/tex]

[tex]z=-1.45833[/tex]

now, we can find probability

[tex]P(-2.29167\leq z\leq -1.45833)[/tex]

we can use table

and we get

[tex]P(-2.29167\leq z\leq -1.45833)=0.0614[/tex]