Respuesta :

f(x)=x^2+12x+26

Vertex form of f(x) = a(x-h)^2 +k

We change f(x) into vertex form using completing the square method

[tex] f(x)=x^2+12x+26 [/tex]

We take half of square of middle term

middle term is 12

Half of square of 12 is [tex] \frac{12}{2}=6 [/tex] then 6^2 = 36

Add and subtract 36 to complete the square

[tex] f(x)=(x^2+12x+36)+26-36 [/tex]

[tex] f(x)= (x+6)^2 +26 - 36
f(x)= (x+6)^2 -10 [/tex]

The vertex form [tex] f(x)= (x+6)^2 -10 [/tex]

Answer:

f (x) = (x+6)^2 - 10

Step-by-step explanation:

Ver imagen ankc5db2