Respuesta :
[tex]\bf \textit{unit vector for }(a,b)\implies \left( \cfrac{a}{\sqrt{a^2+b^2}}~~,~~\cfrac{b}{\sqrt{a^2+b^2}} \right)\\\\
-------------------------------\\\\
(-3,2)\qquad \stackrel{unit~vector}{\implies }\qquad \left( \cfrac{-3}{\sqrt{(-3)^2+2^2}}~~,~~\cfrac{2}{\sqrt{(-3)^2+2^2}} \right)
\\\\\\
\left( -\cfrac{3}{\sqrt{13}}~~,~~ \cfrac{2}{\sqrt{13}}\right)\\\\
-------------------------------[/tex]
[tex]\bf \textit{and now let's \underline{rationalize} the denominator for each} \\\\\\ -\cfrac{3}{\sqrt{13}}\cdot \cfrac{\sqrt{13}}{\sqrt{13}}\implies -\cfrac{3\sqrt{13}}{13} \qquad \qquad \qquad \qquad \cfrac{2}{\sqrt{13}}\cdot \cfrac{\sqrt{13}}{\sqrt{13}}\implies \cfrac{2\sqrt{13}}{13} \\\\\\ \textit{and written in \underline{ai+bj form}}\qquad -\cfrac{3\sqrt{13}}{13}i~~~~+~~~~\cfrac{2\sqrt{13}}{13}j[/tex]
[tex]\bf \textit{and now let's \underline{rationalize} the denominator for each} \\\\\\ -\cfrac{3}{\sqrt{13}}\cdot \cfrac{\sqrt{13}}{\sqrt{13}}\implies -\cfrac{3\sqrt{13}}{13} \qquad \qquad \qquad \qquad \cfrac{2}{\sqrt{13}}\cdot \cfrac{\sqrt{13}}{\sqrt{13}}\implies \cfrac{2\sqrt{13}}{13} \\\\\\ \textit{and written in \underline{ai+bj form}}\qquad -\cfrac{3\sqrt{13}}{13}i~~~~+~~~~\cfrac{2\sqrt{13}}{13}j[/tex]
Answer:
1) c, 2) a, 3) b, 4) c, 5) a, 6)b, 7) a, 8) a
Are the answers to the test
Step-by-step explanation: