Respuesta :
Answer: The product of the above polynomials will be
[tex]\frac{4y}{y+3}[/tex]
Step-by-step explanation:
Since we have given that
[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}[/tex]
We need to solve the product of two polynomials :
[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}\\\\=\frac{2y}{y-3}\times \frac{4(y-3)}{2(y+3)}\\\\=\frac{4y}{y+3}[/tex]
Hence, the product of the above polynomials will be
[tex]\frac{4y}{y+3}[/tex]
Answer:
The value of given expression is [tex]\frac{4y}{y+3}[/tex].
Step-by-step explanation:
The given expression is
[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}[/tex]
[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}=\frac{2y\times (4y-12)}{(y-3)\times (2y+6)}[/tex]
[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}=\frac{2y\times 4\times (y-3))}{(y-3)\times 2\times (y+6)}[/tex]
Cancel out the common factor (y-3) and 2.
[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}=\frac{4y}{y+3}[/tex]
Therefore the value of given expression is [tex]\frac{4y}{y+3}[/tex].