Respuesta :

this is ur required result in attachment
Ver imagen Robinson555

- cos t - ¹/₄cos 2t + c

Further explanation

We will evaluate the following integrals:

[tex]\boxed{ \ \int [sin(t)(1 + cos(t))] \ dt = ? \ }[/tex]

[tex]\boxed{ \ = \int [sin(t) + sin(t)cos(t)] \ dt \ }[/tex]

Use trigonometric formulas for double angles:

[tex]\boxed{ \ 2sin(t)cos(t) = sin2(t) \ } \rightarrow \boxed{ \ sin(t)cos(t) = \frac{1}{2}sin2(t) \ }[/tex]

[tex]\boxed{ \ = \int [sin(t) + \frac{1}{2}sin2(t)] \ dt \ }[/tex]

And now we integrate this trigonometric form.

[tex]\boxed{ \ = -cos(t) - \Big(\frac{1}{2}\Big) \Big(\frac{1}{2}\Big) \ cos \ 2(t) + c \ }[/tex]

Note that we use c for the constant of integration.

Thus the result is [tex]\boxed{ \ \int [sin(t)(1 + cos(t))] \ dt = -cos(t) - \frac{1}{4} \ cos \ 2(t) + c \ }[/tex]

- - - - - - - - - -

Notes

Please keep in mind the following basic trigonometric integrals:

  • [tex]\boxed{ \ \int sin \ ax \ dx = - \frac{1}{a} \ cos \ ax + c \ }[/tex]
  • [tex]\boxed{ \ \int cos \ ax \ dx = \frac{1}{a} \ sin \ ax + c \ }[/tex]

Learn more

  1. About trigonometric identities https://brainly.com/question/1430645
  2. Using the product rule  https://brainly.com/question/1578252  
  3. The derivatives of the composite function  https://brainly.com/question/6013189