Respuesta :

[tex]\bf \begin{array}{ccccccccc} &&x_1&&y_1\\ % (a,b) &&(~ 0 &,& 0~) \end{array} \\\\\\ % slope = m slope = m\implies \cfrac{1}{4} \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-0=\cfrac{1}{4}(x-0)\implies y=\cfrac{1}{4}x[/tex]

Answer:

[tex]y=\frac{1}{4}x+0[/tex]

Step-by-step explanation:

Since, the equation of the line that passes through a point [tex](x_1,y_1)[/tex] and having the slope m is,

[tex]y-y_1=m(x-x_1)[/tex]

Here, [tex]x_1=0[/tex] [tex]y_1=0[/tex] and [tex]m=\frac{1}{4}[/tex]

So, the equation of the line,

[tex]y-0=\frac{1}{4}(x-0)[/tex]

[tex]y=\frac{1}{4}x[/tex]

Since, the slope intercept form of a line is, y = mx +c,

Hence, the required slope-intercept equation is,

[tex]y=\frac{1}{4}x+0[/tex]