Respuesta :
Perimeter of the rectangle will be given by:
P=2(L+W)
L=(3.2a 10.18b)
W=1/2(3.2a 10.18b)=(1.6a 5.9b)
Thus the perimeter will be:
P=2(3.2a 10.18b+1.6a 5.9b)
P=2(4.8a 16.08b)
P=(9.6a+ 32.16b)
Sasha was not correct
P=2(L+W)
L=(3.2a 10.18b)
W=1/2(3.2a 10.18b)=(1.6a 5.9b)
Thus the perimeter will be:
P=2(3.2a 10.18b+1.6a 5.9b)
P=2(4.8a 16.08b)
P=(9.6a+ 32.16b)
Sasha was not correct
Answer:
No, her reasoning is incorrect.
Step-by-step explanation:
Given,
The length of the rectangle,
[tex]l = ( 3.2a + 0.18b ) \text{ cm}[/tex],
Here, the width is half the length.
⇒ Width of the rectangle,
[tex]w = \frac{l}{2}=\frac{1}{2}(3.2a + 0.18b)=\frac{3.2a}{2}+\frac{0.18b}{2} = (1.6a + 0.09b)\text{ cm}[/tex]
We know that,
The perimeter of a rectangle is,
[tex]P=2(l+w)[/tex]
[tex]=2(3.2a + 0.18b+1.6a + 0.09b)[/tex]
[tex]=2(4.8a+0.27b)[/tex]
[tex]=(9.6a+0.54b)\text{ cm}[/tex]
Since, 9.6a + 0.54b ≠ 12.8a + 0.72b
Hence, her reasoning is incorrect.