Respuesta :
[tex]5x^2 = 10x[/tex]
[tex]5x^2-10x=10x-10x[/tex]
[tex]5x^2-10x=0[/tex]
Use quadratic formula
[tex]\quad x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]\mathrm{For\:}\quad a=5,\:b=-10,\:c=0:\quad x_{1,\:2}=\dfrac{-\left(-10\right)\pm \sqrt{\left(-10\right)^2-4\cdot \:5\cdot \:0}}{2\cdot \:5}[/tex]
[tex]x=\dfrac{-\left(-10\right)+\sqrt{\left(-10\right)^2-4\cdot \:5\cdot \:0}}{2\cdot \:5}:\quad 2[/tex]
[tex]x=\dfrac{-\left(-10\right)-\sqrt{\left(-10\right)^2-4\cdot \:5\cdot \:0}}{2\cdot \:5}:\quad 0[/tex]
[tex]x=2,\:x=0[/tex]
[tex]5x^2-10x=10x-10x[/tex]
[tex]5x^2-10x=0[/tex]
Use quadratic formula
[tex]\quad x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]\mathrm{For\:}\quad a=5,\:b=-10,\:c=0:\quad x_{1,\:2}=\dfrac{-\left(-10\right)\pm \sqrt{\left(-10\right)^2-4\cdot \:5\cdot \:0}}{2\cdot \:5}[/tex]
[tex]x=\dfrac{-\left(-10\right)+\sqrt{\left(-10\right)^2-4\cdot \:5\cdot \:0}}{2\cdot \:5}:\quad 2[/tex]
[tex]x=\dfrac{-\left(-10\right)-\sqrt{\left(-10\right)^2-4\cdot \:5\cdot \:0}}{2\cdot \:5}:\quad 0[/tex]
[tex]x=2,\:x=0[/tex]
To begin factoring, set the equation equal to zero - subtract 10x from each side:
5x² = 10x
5x² - 10x = 0
Next, see if you can pull out a GCF, --greatest common factor-- from both terms. You can pull out 5x:
5x² - 10x = 0
5x(x - 2) = 0
The most you can factor the expression is 5x(x - 2) = 0.
5x² = 10x
5x² - 10x = 0
Next, see if you can pull out a GCF, --greatest common factor-- from both terms. You can pull out 5x:
5x² - 10x = 0
5x(x - 2) = 0
The most you can factor the expression is 5x(x - 2) = 0.