THE REWARD IS 20 PTS!!!
Confirm that f and g are inverses by showing that f(g(x)) = x and g(f(x)) = x.

f(x) = ((x - 7) / (x + 3)) g(x) = ((-3x - 7) / (x - 1))

This is too complicated for me... please help... T-T

Respuesta :

DeanR

Good use of parentheses in asking the question; fellow questioners take note.


[tex]f(x) = \dfrac{x - 7}{x+3}[/tex]


[tex]g(x) = \dfrac{-3x - 7}{x-1}[/tex]


It looks like we have some algebra ahead of us:


[tex]f(g(x)) = f \left( \dfrac{-3x - 7}{x-1} \right) = \dfrac{ \left( \dfrac{-3x - 7}{x-1} \right) - 7}{ \left( \dfrac{-3x - 7}{x-1} \right)+3}[/tex]


When we have a complicated fraction like that it's best if we multiply top and bottom by the inner denominators to simplify:


[tex]f(g(x)) = \dfrac{ \left( \dfrac{-3x - 7}{x-1} \right) - 7}{ \left( \dfrac{-3x - 7}{x-1} \right)+3} \cdot \dfrac{x-1}{x-1} = \dfrac{ (-3x - 7) -7(x-1)}{(-3x - 7)+3(x-1)}[/tex]


[tex]f(g(x)) = \dfrac{ -3x -7 -7x+7}{-3x - 7+3x-3} = \dfrac{-10 x}{-10} = x \quad\checkmark[/tex]



OK, now the other way.


[tex]g(f(x)) = g \left( \dfrac{x - 7}{x+3} \right) = \dfrac{-3 \left( \dfrac{x - 7}{x+3} \right) - 7}{ \left( \dfrac{x - 7}{x+3} \right)-1} \cdot \dfrac{x+3}{x+3}[/tex]


[tex]g(f(x)) = \dfrac{-3(x - 7) - 7(x+3)}{ (x - 7)-(x+3)} = \dfrac{-3x+21-7x-21}{-10} = x \quad\checkmark[/tex]


Not so bad.



Answer:

Step-by-step explanation:

f(g(x))= f(-3x-7/x-1)= (-3x-7/x-1)-7/(-3x-7/x-1)+3

f(g(x))= (-3x-7/x-1)-7/(-3x-7/x-1)+3 * x-1/x-1= (-3x-7)-7(x-1)/ (-3x-7)+3(x-1)

f(g(x))=(-3x-7-7x+7)/(-3x-7+3x-3)=-10x/-10=x

g(f(x))=g(x-7/x+3)= -3(x-7/x+3)-7/(x-7/x+3)-1*(x+3/x+3)

g(f(x))=-3(x-7)-7(3+x)/(x-7)-(x+3)

= -3x+ 21 -7x - 21 / 10 = x