Respuesta :

  • Quadratic Formula: [tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex] , with a = x^2 coefficient, b = x coefficient, and c = constant.

Firstly, starting with the y-intercept. To find the y-intercept, set the x variable to zero and solve as such:

[tex]y=3*0^2+24*0-51\\y=0+0-51\\y=-51[/tex]

Your y-intercept is (0,-51).

Next, using our equation plug the appropriate values into the quadratic formula:

[tex]x=\frac{-24\pm \sqrt{24^2-4*3*(-54)}}{2*3}[/tex]

Next, solve the multiplications and exponent:

[tex]x=\frac{-24\pm \sqrt{576-(-648)}}{6}\\\\x=\frac{-24\pm \sqrt{576+648}}{6}[/tex]

Next, solve the addition:

[tex]x=\frac{-24\pm \sqrt{1224}}{6}[/tex]

Now, simplify the radical using the product rule of radicals as such:

  • Product Rule of Radicals: √ab = √a × √b

√1224 = √12 × √102 = √2 × √6 × √6 × √17 = 6 × √2 × √17 = 6√34

[tex]x=\frac{-24\pm 6\sqrt{34}}{6}[/tex]

Next, divide:

[tex]x=-4\pm \sqrt{34}[/tex]

The exact values of your x-intercepts are (-4 + √34, 0) and (-4 - √34, 0).

Now to find the approximate values, solve this twice: once with the + symbol and once with the - symbol:

[tex]x=-4+ \sqrt{34},-4- \sqrt{34}\\x\approx 1.83, -9.83[/tex]

The approximate values of your x-intercepts (rounded to the hundredths) are (1.83,0) and (-9.83,0).